

3

2

MSC120HF120T2LH SiC MOSFET Module

Features:

- Ultra Low Loss
- High-Frequency Operation
- Zero Reverse Recovery Current from Diode
- Zero Turn-off Tail Current from MOSFET
- Normally-off, Fail-safe Device Operation
- Easy of Paralleling
- Copper Baseplate and Aluminum Nitride Insulator

Applications:

- Induction Heating
- DC/DC Converters
- Solar and Wind Inverters
- Line Regen Drives

.

• Battery Chrage

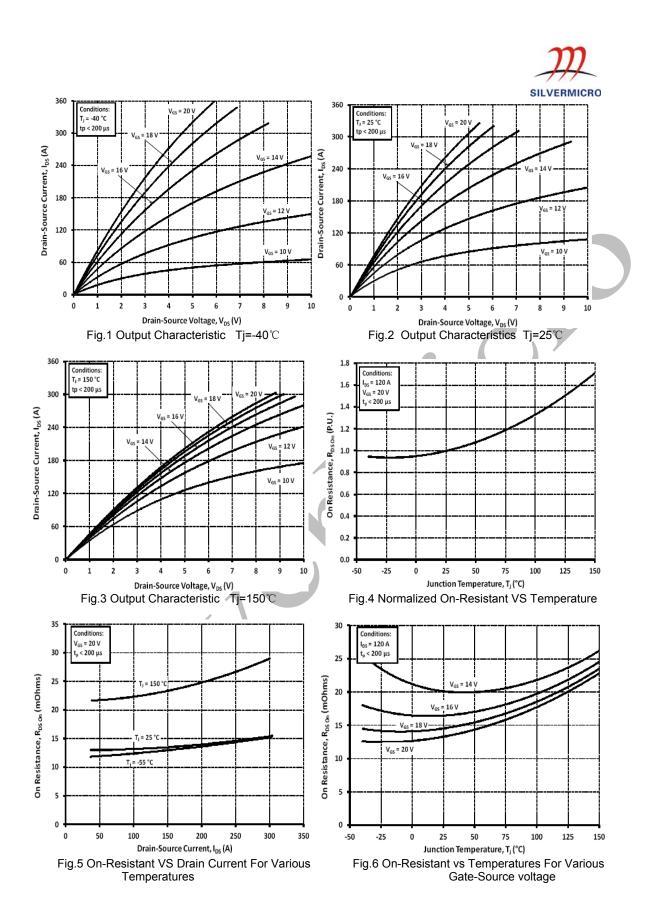
Absolute Maximum Ratings (T_c=25[°]Cunless otherwise specified)

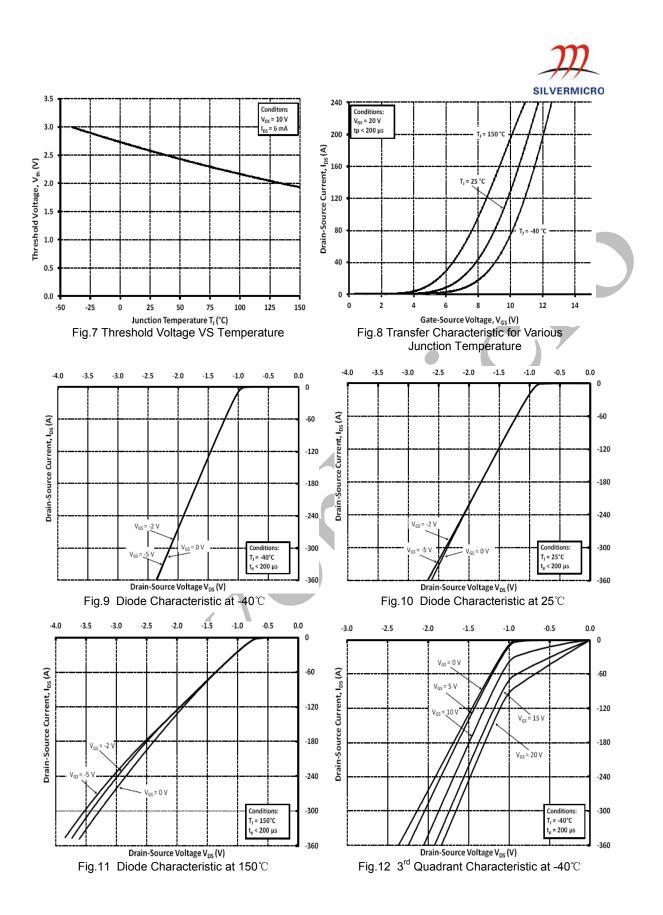
Symbol	D	Value	Units	
V _{DSmax}	Drain-Source Voltage	1200	V	
V _{GSmax}	Gate-Source Voltage Absolute Maximum values		-10/+25	V
V _{GSop}	Gate-Source Voltage Recommended Operational Values		-5/20	V
	Quatiences Desire Querent	V _{GS} =20V,T _C =25℃	193	А
ID	Continuous Drain Current	V _{GS} =20V,T _C =90℃	138	А
I _{D(pluse)}	Pulsed Drain Current	Pulse width t_p limited by T_{jmax}	480	А
PD	Power Dissipation	T _c =25℃, T _j =150℃	925	W

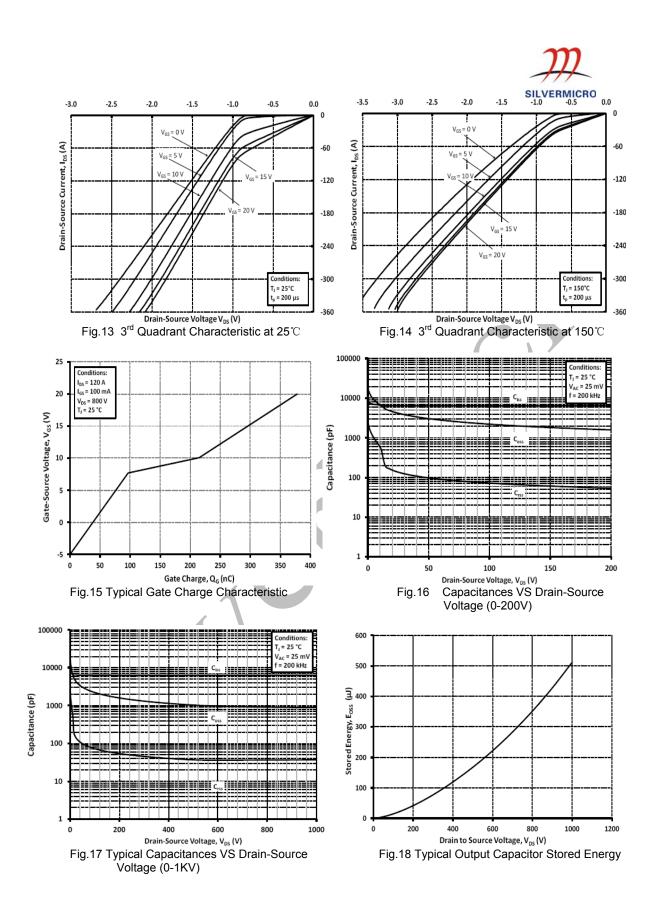
Symbol	Description	Conditions	Min	Тур	Max	Unit	
V _{(BR)DSS}	Drain - Source Breakdown Voltage	V _{GS} =0V,I _D =300uA	1.2			V	
$V_{\text{GS(th)}}$	Gate Threshold Voltage	V _{DS} = 10 V, I _D =6 mA	1.8	2.6		V	
		V _{DS} = 1.2 kV, V _{GS} = 0V		80	300	μA	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 1.2 kV, V _{GS} = 0V, T _J = 150 °C		400	1500	μA	
I _{GSS}	Gate-Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0V			100	nA	
		V _{GS} = 20 V, I _{DS} = 120 A		13	16		
R _{DS(on)}	On State Resistance	V _{GS} = 20 V, I _{DS} = 120 A, T _J = 150 °C		23	30	mΩ	
		V _{DS} = 20 V, I _{DS} = 120 A		53.8			
g fs	Transconductance	V _{DS} = 20 V, I _{DS} = 120 A, Tj=150℃		48.5		S	
C _{iss}	Input Capacitance	, , , , , , , , , , , , , , , , , , ,		6.3			
Coss	Output Capacitance	V _{DS} = 1KV, f = 200 kHz, V _{AC} = 25 mV		0.88		nF	
C _{rss}	Reverse Transfer Capacitance			0.037			
Eon	Turn-On Switching Energy	V _{DD} = 600 V, V _{GS} = -5V/+20V		1.7			
E _{off}	Turn-Off Switching Energy	I_D = 120 A, $R_{G(ext)}$ = 2.5 Ω		0.4		— mJ	
R _{G(int)}	Internal Gate Resistance	f = 200 kHz, V _{AC} = 25 mV		1.8		Ω	
Q_{GS}	Gate-Source Charge			97			
Q_{GD}	Gate-Drain Chrage	V _{DD} = 800 V, V _{GS} = -5V/+20V, I _D = 120 A,		118		nC	
Q _G	Total Gate Chrage			378			
t _{d(on)}	Turn-off delay time			38			
tr	Rise Time	V _{DD} = 600V, V _{GS} = -5/+20V,		34		ns	
t _{d(off)}	Turn-off delay time	$I_D = 120 \text{ A}, \text{ R}_{G(ext)} = 2.5 \Omega,$		70		113	
t _f	Fall Time			22			
t _{sc}	Short Time	V _{DD} =700V,V _{GS} =15V, T _J =100℃	5			μs	
R _{0JCM}	MOSFET Thermal Resistance: Junction-To-Case			0.125	0.135	°C/M	

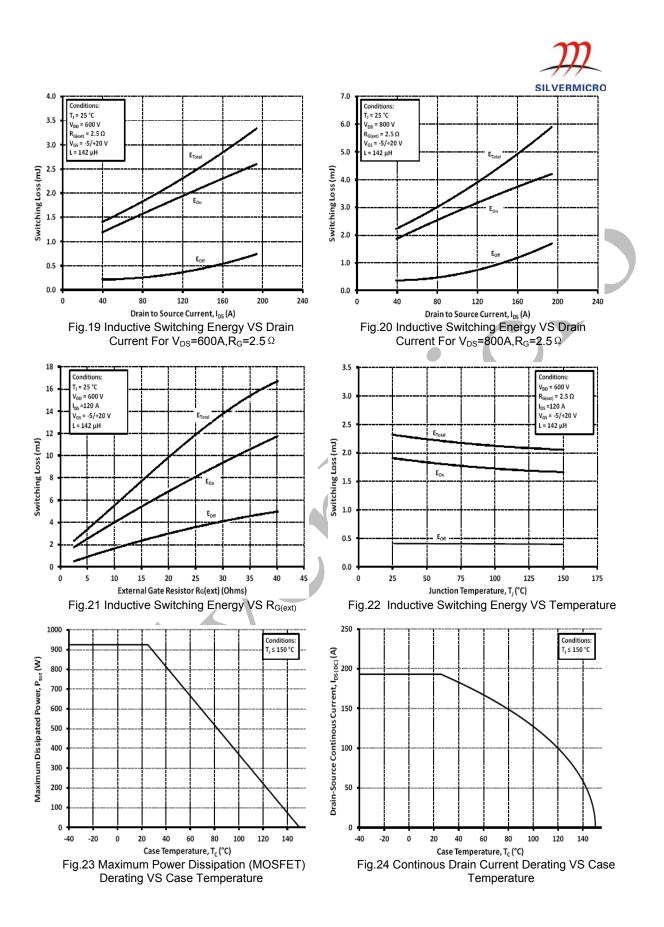
Electrical Characteristics of MOSFET (T_C=25[°]Cunless otherwise specified)

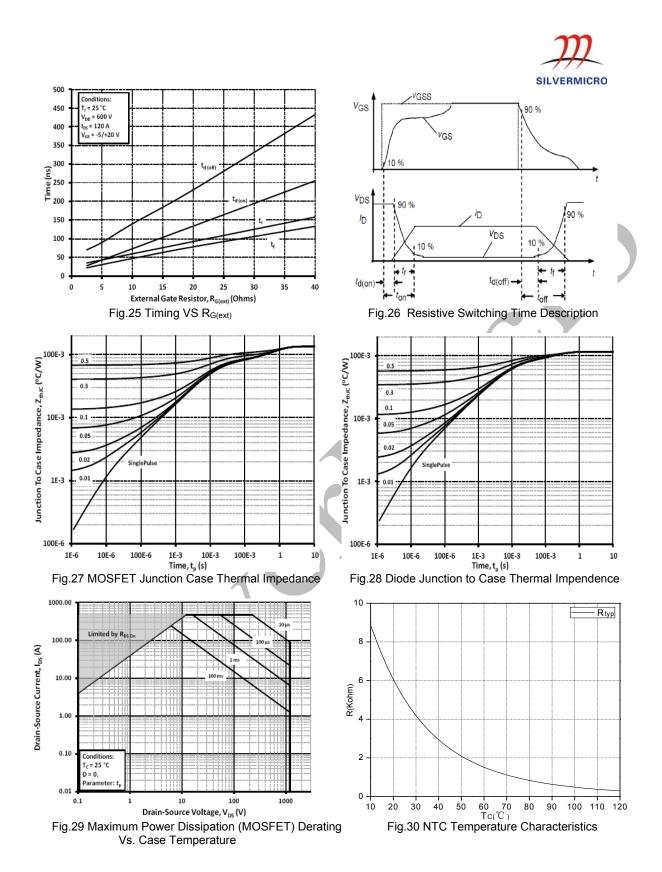
Electrical Characteristics of Body Diode (T_C=25°C unless otherwise specified)

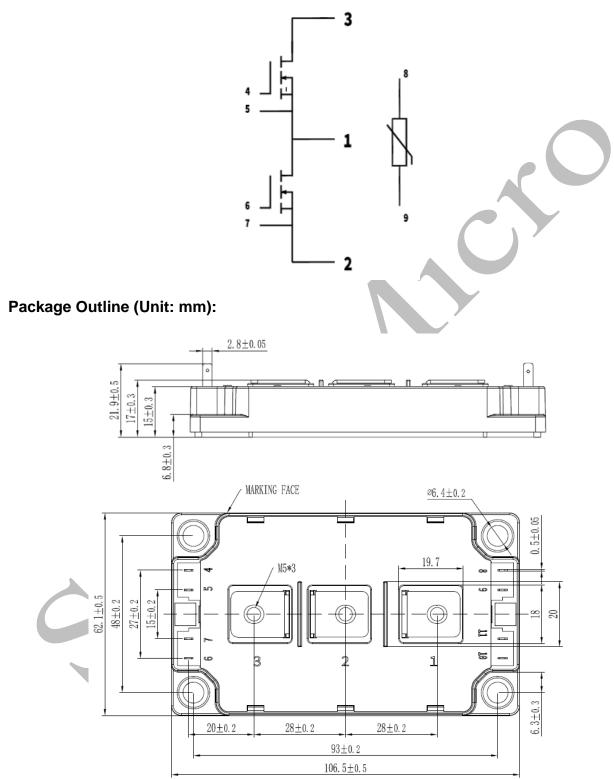

Symbol	Description	Conditions	Min	Тур	Max	Unit
V _{SD}		I _F = 120 A, V _{GS} = 0		1.5	1.8	
	Diode Forward Voltage	I _F = 120 A, V _{GS} = 0 T _j =150℃		1.9	2.4	V
Q _C	Total Capacitive Charge	I _{SD} = 120A, V _{DS} = 600 V, T _J = 25°C, di _{SD} /d _t = 3 kA/μs, V _{GS} = -5 V		1.1		μC
R _{θJCD}	Diode Thermal Resistance: Junction-To-Case			0.108	0.115	℃/W
	Oraction on Diada Francesch Oracest	V _{GS} = -5V, T _C =25℃			305	A
I _F Continuous Diode Forward Curren		V _{GS} = 5V, T _C =25℃			195	А
NTC-Thermistor Characteristic Values						


NTC-Thermistor Characteristic Values


R ₂₅	T _C =25℃	5			kΩ	
∆ R/R	T _C =100°C, R ₁₀₀ =481Ω		<u>+</u>	5	%	
P ₂₅	T _C =25℃	50			mW	
B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2 - 1/(298.15K))]$	3380			К	
B _{25/80}	R ₂ =R ₂₅ exp[B _{25/80} (1/T ₂ -1/(298.15K))]	3440			к	
Module	le					


Module


Symbol	Description		Min	Тур	Max	Unit
Viso	Isolation Voltage (All Terminals Shorted)	f = 50Hz, 1minute	2500			V
L _{Stray}	Stray Inductance	Measured between terminals 2 and 3			8.2	nH
TJ	Maximum Junction Temperature				150	°C
T _{JOP}	Maximum Operating Junction Temperature Range				150	°C
T _{stg}	Storage Temperature		-40		125	°C
СТІ	Comparative Tracking Index		200			
R _{ecs}	Case-To-Sink Thermally (Conductive Grease Applied)			0.03		°C/W
м	Power Terminals Screw:M5		2.0		3.5	N∙m
М	Mounting Screw:M6		3.0		5.0	N∙m
G	Weight			290		g



Internal Circuit:

Date	Revision	Notes
12/27/2018	01	Initial Release
01/24/2019	02	Add t _{SC} & L _{Stray}

Announcement

Information in this document is believed to be accurate and reliable. However, NJSME does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to Make Changes

NJSME reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.