

96 97

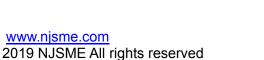
з

5

2

MSC120HF120T2NH SiC MOSFET Module

Features:


- Ultra Low Loss
- High-Frequency Operation
- Zero Reverse Recovery Current from Diode
- Zero Turn-off Tail Current from MOSFET
- Normally-off, Fail-safe Device Operation
- Easy of Paralleling
- Copper Baseplate and Aluminum Nitride Insulator

Applications:

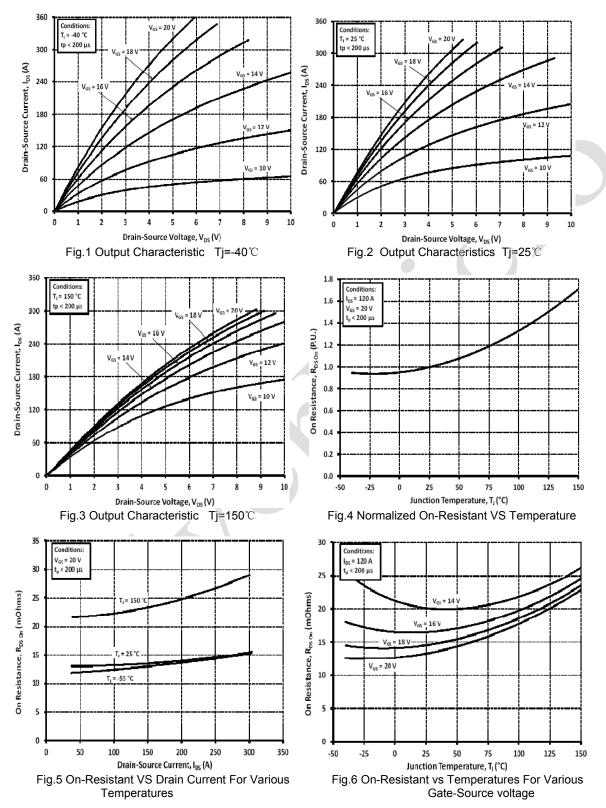
- Induction Heating
- DC/DC Converters
- Solar and Wind Inverters
- Line Regen Drives
- Battery Chrage

Absolute Maximum Ratings (T_c=25°C unless otherwise specified)

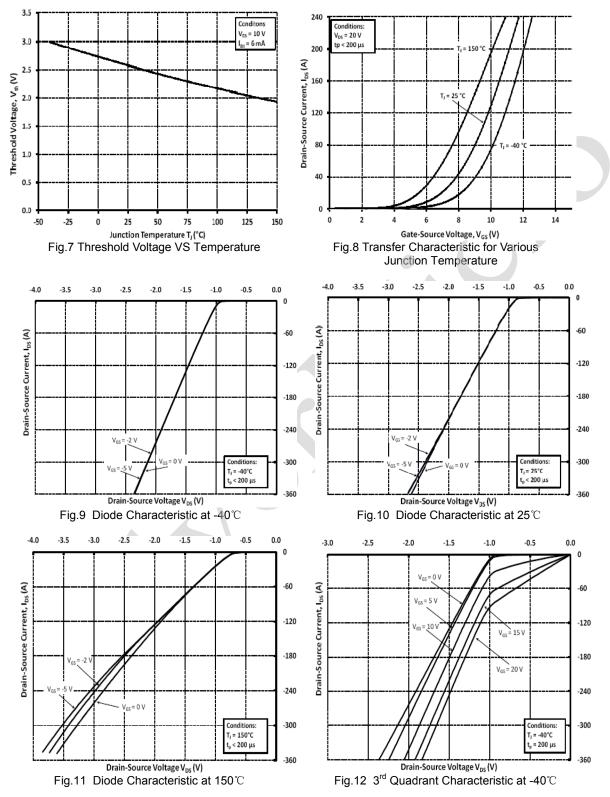
Symbol		Value	Units	
V _{DSmax}	Drain-Source Voltage		1200	V
V _{GSmax}	Gate-Source Voltage	Absolute Maximum values	-10/+25	V
V _{GSop}	Gate-Source Voltage	Recommended Operational Values	-5/20	V
I _D	Continuous Drain Current	V _{GS} =20V,T _C =25℃	193	А
	Continuous Drain Current	V _{GS} =20V,T _C =90℃	138	А
I _{D(pluse)}	Pulsed Drain Current	Pulse width t _p limited by T _{jmax}	480	А
P _D	Power Dissipation	T _c =25℃,T _j =150℃	925	W

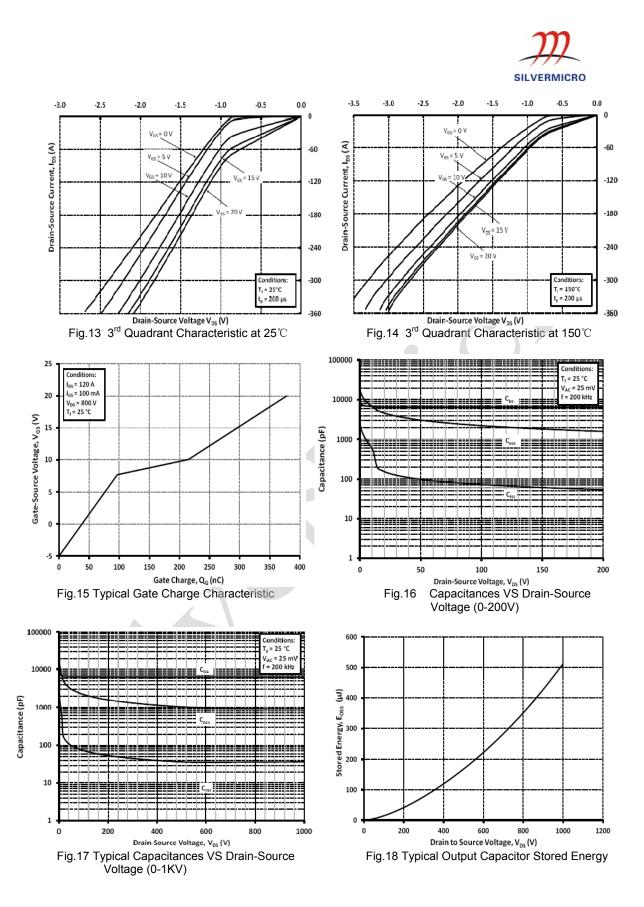
Symbol	Description	Conditions	Min	Тур	Max	Unit	
$V_{(\text{BR})\text{DSS}}$	Drain - Source Breakdown Voltage	V _{GS} =0V,I _D =300uA	1.2			V	
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = 10 V, I _D =6 mA	1.8	2.6		V	
I _{DSS}		V _{DS} = 1.2 kV, V _{GS} = 0V		80	300) μΑ	
	Zero Gate Voltage Drain Current	V _{DS} = 1.2 kV, V _{GS} = 0V, T _J = 150 °C		400	1500 µA	μA	
I _{GSS}	Gate-Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0V		1	100	nA	
R _{DS(on)}	On State Resistance	V _{GS} = 20 V, I _{DS} = 120 A		13	16		
		V _{GS} = 20 V, I _{DS} = 120 A, T _J = 150 °C		23	30	mΩ	
g fs	Transasadustanas	V _{DS} = 20 V, I _{DS} = 120 A		53.8			
	Transconductance	V _{DS} = 20 V, I _{DS} = 120 A, Tj=150℃		48.5		S	
C _{iss}	Input Capacitance			6.3			
C _{OSS}	Output Capacitance	V_{DS} = 1KV, f = 200 kHz, V_{AC} = 25 mV		0.88		nF	
C _{rss}	Reverse Transfer Capacitance			0.037			
Eon	Turn-On Switching Energy	V _{DD} = 600 V, V _{GS} = -5V/+20V		1.7			
E _{off}	Turn-Off Switching Energy	I_D = 120 A, $R_{G(ext)}$ = 2.5 Ω		0.4		— mJ	
R _{G(int)}	Internal Gate Resistance $f = 200 \text{ kHz}, V_{AC} = 25 \text{ mV}$			1.8		Ω	
Q _{GS}	Gate-Source Charge			97			
Q_{GD}	Gate-Drain Chrage	V _{DD} = 800 V, V _{GS} = -5V/+20V, I _D = 120 A,		118		nC	
Q _G	Total Gate Chrage			378		1	
t _{d(on)}	Turn-off delay time			38			
tr	Rise Time	– V _{DD} = 600V, V _{GS} = -5/+20V,		34		ns	
t _{d(off)}	Turn-off delay time	$l_{\rm r} = 120$ A $P_{\rm ev} = 2.5$ O		70		_	
t _f	Fall Time			22			
t _{SC}	Short Time	V _{DD} =700V,V _{GS} =15V, T _J =100℃	5			μs	
$R_{\theta JCM}$	MOSFET Thermal Resistance: Junction-To-Case			0.125	0.135	℃/W	

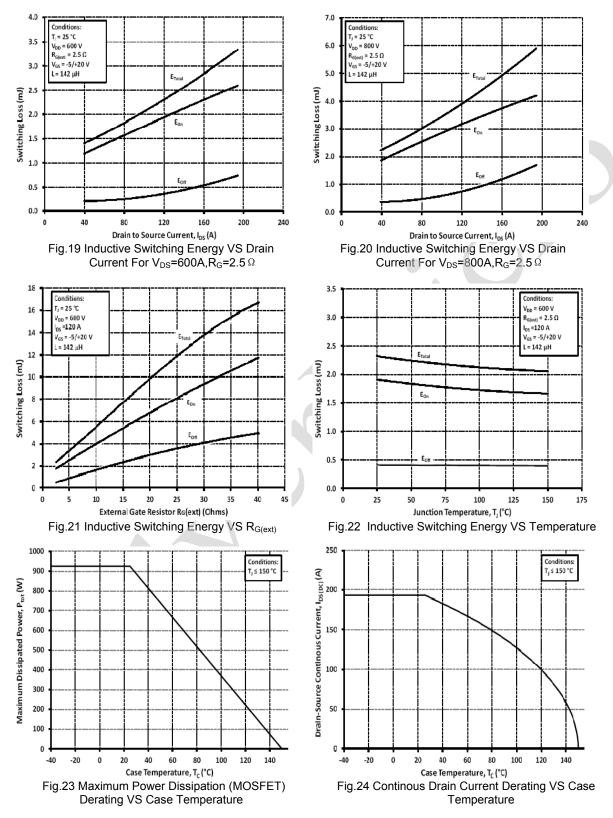
Electrical Characteristics of MOSFET (T_c=25 $^\circ\!\mathrm{C}$ unless otherwise specified)

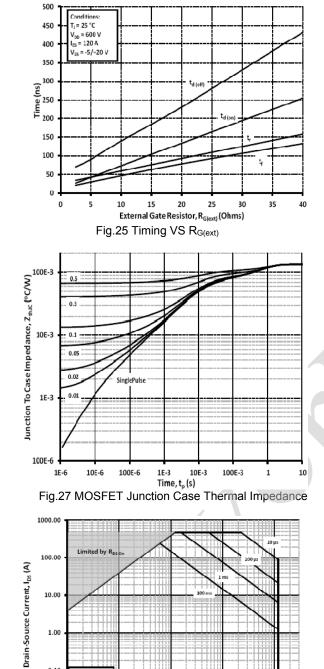

Free-Wheeling SiC Schottky Diode Characteristics (T_C=25[°]C unless otherwise specified)

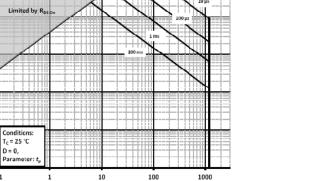
Symbol	Description	Conditions	Min	Тур	Max	Unit
V _{SD}		I _F = 120 A, V _{GS} = 0		1.5	1.8	v
	VSD	Diode Forward Voltage	I _F = 120 A, V _{GS} = 0 T _j =150℃		1.9	2.4
Q _C	Total Capacitive Charge	I _{SD} = 120A, V _{DS} = 600 V, T _J = 25°C, di _{SD} /d _t = 3 kA/μs, V _{GS} = -5 V		1.1		μC
R _{0JCD}	Diode Thermal Resistance: Junction-To-Case			0.108	0.115	℃/W
I _F	Continuous Diodo Forward Current	V _{GS} = -5V, T _C =25℃			305	А
	Continuous Diode Forward Current	V _{GS} = 5V, T _C =25℃			195	А
Module						

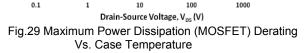

Module

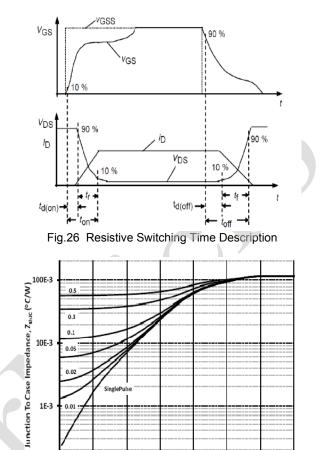

Symbol	Description	Conditions	Min	Тур	Max	Unit
T _{Jmax}	Junction Temperature		-40		150	°C
Tc,T _{STG}	Case and Storage Temperature Range		-40		125	°C
Visol	Case Isolation Voltage	AC,50 Hz, 1 min	5.0			KV
L _{Stray}	Stray Inductance	Measured between terminals 2 and 3			15	nH
G	Weight			300		g
М	Mounting Torque	To heatsink and terminal			5	N∙m
	Clearance Distance	Terminal to terminal			12	mm
Creepage Distance	Croopage Distance	Terminal to terminal			30	mm
	Creepage Distance	Terminal to baseplate			40	mm











1E-3 10 Time, t_p (s)

Fig.28 Diode Junction to Case Thermal Impendence

10E-3

100E-3

1

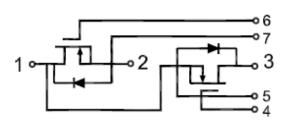
10

0.01

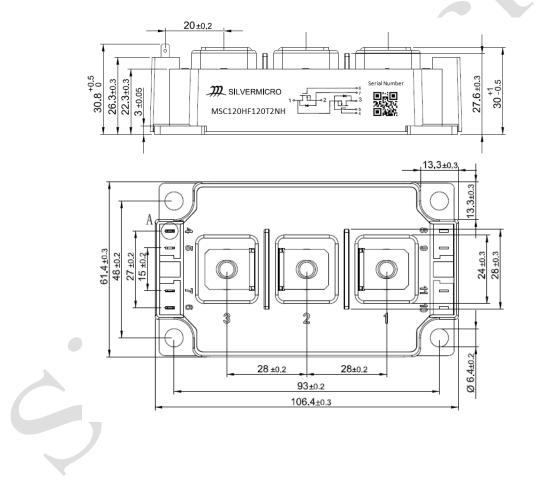
100E-6

1E-6

10E-6


100E-6

0.10


0.01

Internal Circuit

Package Outline (Unit: mm):

Date	Revision	Notes
09/15/2015	01	Initial Release
01/24/2019	02	Add t _{SC}

Announcement

Information in this document is believed to be accurate and reliable. However, NJSME does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to Make Changes

NJSME reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.