

MSC20FF120T5H SiC MOSFET Module

Preliminary Data

Features:

- Ultra Low Loss
- High-Frequency Operation
- Zero Reverse Recovery Current from Diode
- Zero Turn-off Tail Current from MOSFET
- Normally-off, Fail-safe Device Operation
- Easy of Paralleling
- Copper Baseplate and Aluminum Nitride Insulator

25,26 23,24 7 21,22 19,20 13,14

Applications:

- Solar Inverter
- 3-Phase PFC
- UPS and SMPS
- Regen Drives
- Motor Drive

Absolute Maximum Ratings (T_C=25°C unless otherwise specified)

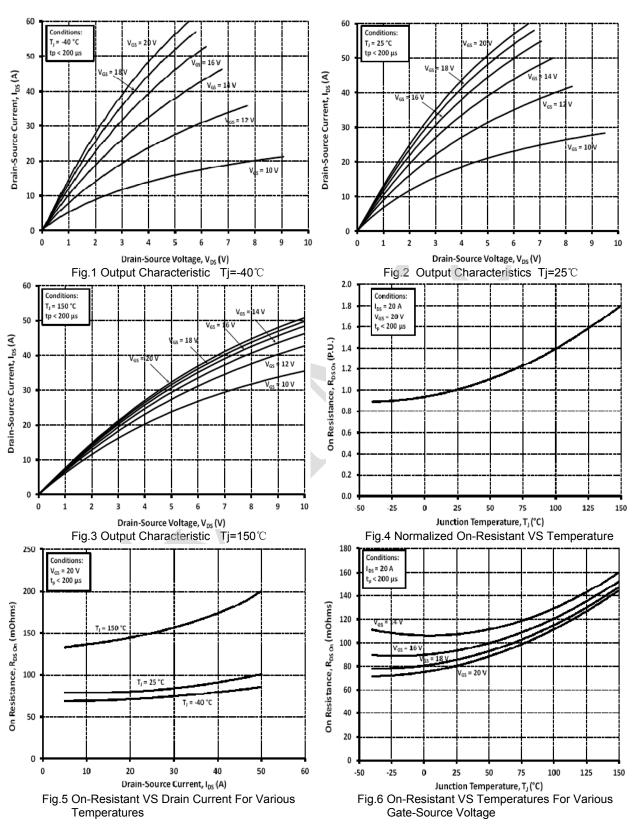
Symbol	Description		Value	Units
V _{DSmax}	Drain-Source Voltage		1200	V
V _{GSmax}	Gate-Source Voltage	Absolute Maximum values	-10/+25	V
V _{GSop}	Gate-Source Voltage	Recommended Operational Values	-5/20	V
I _D	Continuous Drain Current	V _{GS} =20V,T _C =25°C	29.5	Α
		V _{GS} =20V,T _C =90°C	20	Α
I _{D(pluse)}	Pulsed Drain Current	Pulse width t _p limited by T _{jmax}	80	Α
P _D	Power Dissipation	T _c =25℃, T _j =150℃	167	W

Electrical Characteristics of MOSFET (T_C =25 $^{\circ}$ C unless otherwise specified)

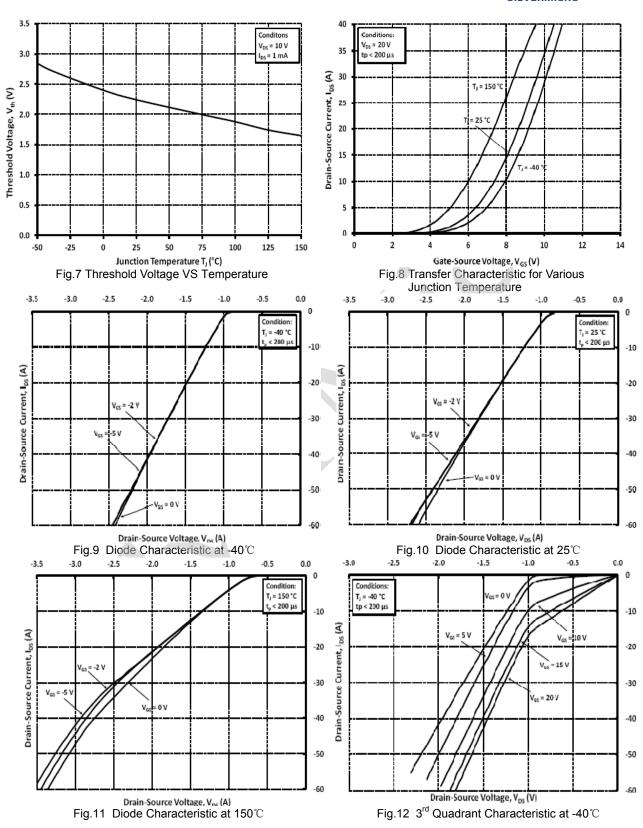
Symbol	Description	Conditions	Min	Тур	Max	Unit
V _{(BR)DSS}	Drain - Source Breakdown Voltage	V _{GS} =0V,I _D =300uA	1.2			KV
$V_{\text{GS(th)}}$	Gate Threshold Voltage	V _{DS} = 10 V, I _D =1 mA	1.7	2.2		V
		V _{DS} = 10 V, I _D =1 mA, T _j =150℃		1.6		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 1.2 kV, V _{GS} = 0V		1	100	μΑ
		$V_{DS} = 1.2 \text{ kV}, V_{GS} = 0 \text{V},$ $T_{J} = 150 ^{\circ}\text{C}$		10	250	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0V		1	250	nA
_		V _{GS} = 20 V, I _{DS} = 20 A		80	98	
R _{DS(on)}	On State Resistance	$V_{GS} = 20 \text{ V}, I_{DS} = 20 \text{ A},$ $T_J = 150 ^{\circ}\text{C}$		145	208	mΩ
		V _{DS} = 20 V, I _{DS} = 20 A		9.8		- s
g fs	Transconductance	V _{DS} = 20 V, I _{DS} = 20 A, Tj=150℃		8.5		
C _{iss}	Input Capacitance			900		nF
C _{Oss}	Output Capacitance	$V_{DS} = 800 \text{V}, f = 200 \text{ kHz},$ $V_{AC} = 25 \text{ mV}$		181		
C _{rss}	Reverse Transfer Capacitance			5.9		
E _{on}	Turn-On Switching Energy	V _{DD} = 800 V, V _{GS} = -5V/+20V		0.41		
E _{off}	Turn-Off Switching Energy	I _D = 20 A, R _{G(ext)} = 2.5 Ω Load=412 uH, Tj=150 °C		0.07		mJ
R _{G(int)}	Internal Gate Resistance	f =1MHz, V _{AC} = 25 mV		3.8		Ω
Q _{GS}	Gate-Source Charge			16.1		
Q _{GD}	Gate-Drain Chrage	V_{DD} = 800 V, V_{GS} = -5V/+20V, I_{D} = 20 A,		20.7		nC
Q _G	Total Gate Chrage			61.5		
t _{d(on)}	Turn-off delay time			10		
t _r	Rise Time	$V_{DD} = 800V, V_{GS} = -5/+20V,$ $I_{D} = 20 \text{ A}, R_{G(ext)} = 2.5 \Omega,$ Timing relative to VDS		14		ns
t _{d(off)}	Turn-off delay time			22.4		1
t _f	Fall Time			53		İ
R _{θJCM}	Thermal Resistance Junction-To-Case for MOSFET			0.7	0.75	°C/W

Free-Wheeling SiC Schottky Diode Characteristics (T_C=25 °C unless otherwise specified)

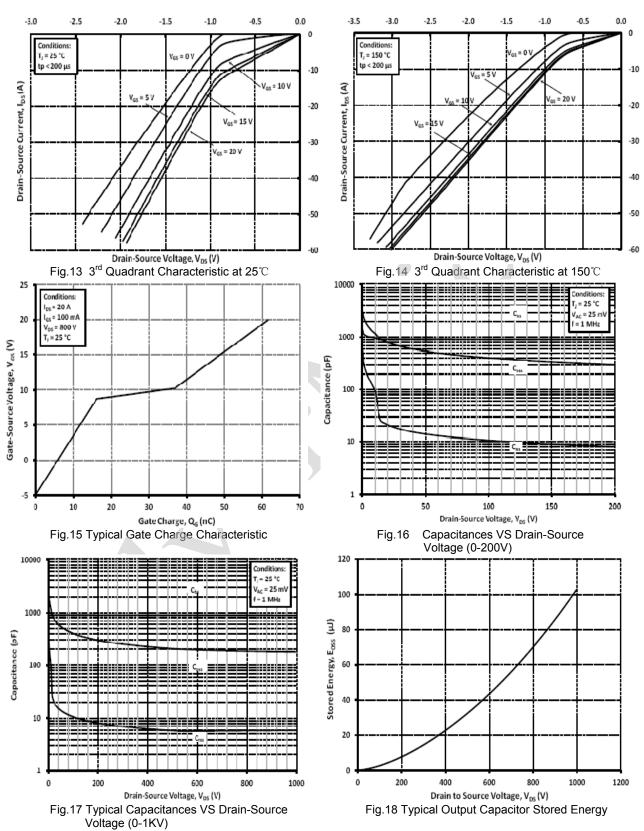
Symbol	Description	Conditions	Min	Тур	Max	Unit
V _{SD}	Diode Forward Voltage	I _F = 20 A, V _{GS} = 0		1.5	1.7	V
		I _F = 20 A, V _{GS} = 0 T _j =150℃		1.8	2.3	
Q _C	Total Capacitive Charge	I_{SD} = 20A, V_{DS} = 800 V, T_{J} = 25°C, di_{SD}/d_{t} = 1500A/ μ s, V_{GS} = -5 V		0.27		μC
R _{0JCD}	Thermal Resistance Junction-To- Case for Diode			0.8	0.85	°C/W
IF	Continuous Diode Forward Current	V _{GS} = -5V,T _C =25℃			46	Α
		V _{GS} = 5V, T _C =25℃			27	А

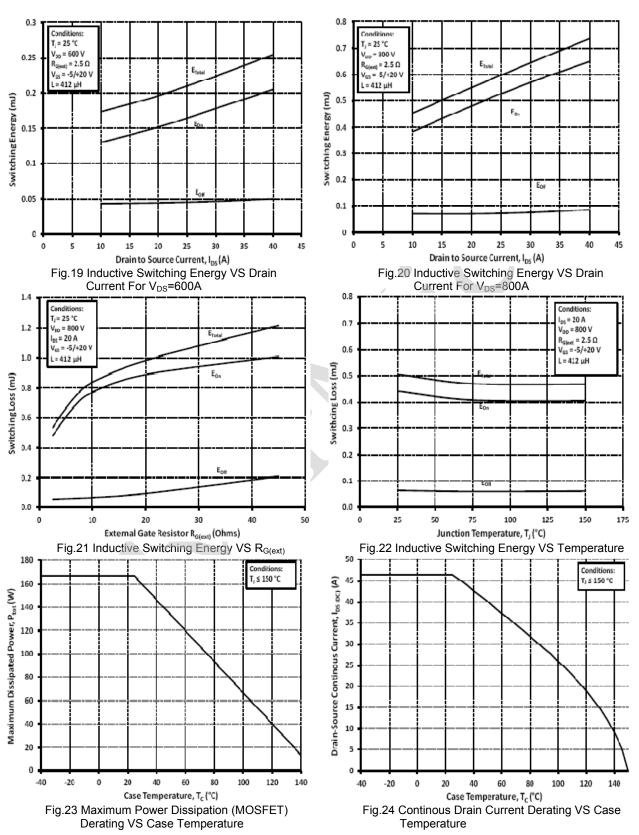

NTC Characteristics

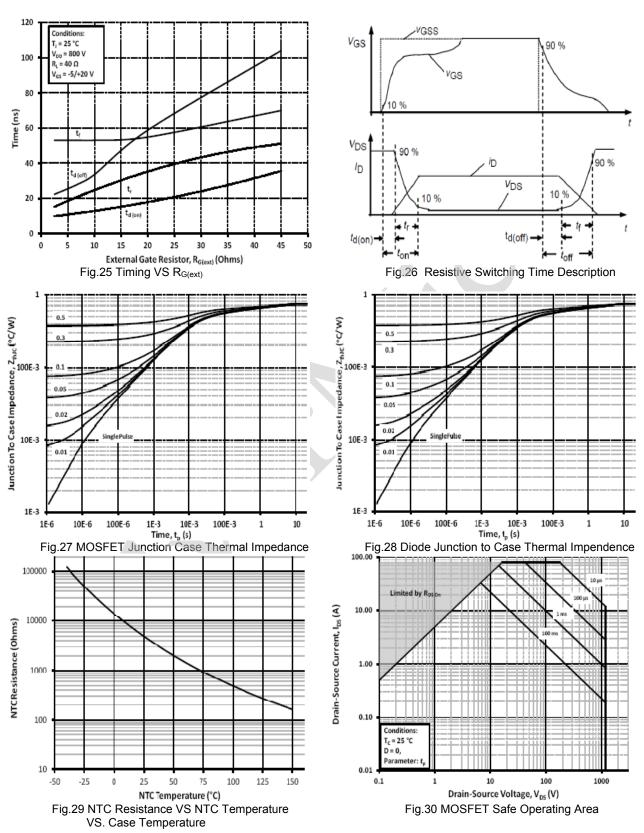
Symbol	Conditions	Min	Тур	Max	Unit
R ₂₅	T _C =25℃		5		ΚΩ
Delta R/R	T _C =100°C.R ₁₀₀ =481 Ω			±5	%
P ₂₅	T _C =25℃			20	mW
B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298.15K))]$		3380		К
B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298.15K))]$		3440		К

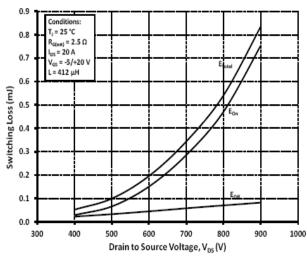
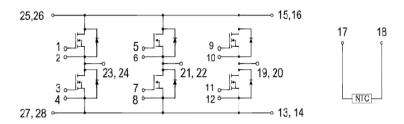

Module

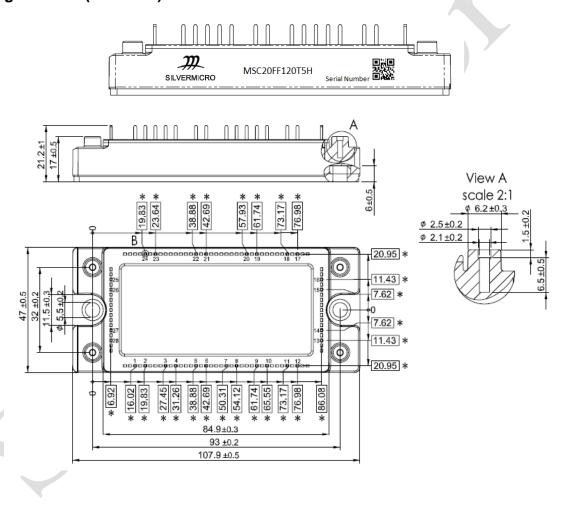
Symbol	Description	Conditions	Min	Тур	Max	Unit
T_{Jmax}	Junction Temperature		-40		150	$^{\circ}$ C
Tc,T _{STG}	Case and Storage Temperature Range		-40		125	$^{\circ}$
Viso	Case Isolation Voltage	AC,50 HZ, 1 min	4.5			KV
L _{Stray}	Stray Inductance	Measured between terminals 2 and 3			30	nH
G	Weight			180		g
М	Mounting Torque	To heatsink and terminal			5	N·m
	Clearance Distance	Terminal to terminal			14.09	mm
	Creepage Distance	Terminal to terminal			14.11	mm
		Terminal to baseplate			17.46	mm








Fig.31 Inductive Switching Energy VS. VDS

Internal Circuit

Package Outline (Unit: mm):

Announcement

Information in this document is believed to be accurate and reliable. However, NJSME does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to Make Changes

NJSME reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.